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Two Types of Polymeric Membranes

• Polymeric Membranes as solid electrolytes in 
lithium rechargeable systems

• Polymeric Membranes for catalytic and separation 
applications. 
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Polymer Electrolytes
• High Molecular Weight Polymers
• mechanical properties for solid state construction
• better electrode interface than solid crystalline electrolytes

• liquid like degrees of freedom at atomic level! amorphous
• elimination of liquid electrolyte allows for use of lithium as electrode 

- small molecules can be reactive

• Polyethylene oxide - polymer of choice to solvate lithium 
salt

low glass transition temperature ~ -50 °C
low melting point ~ 60 °C

At RT s ~ 10-5 S/cm
At 80°C s~10-3 S/cm
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Polymer Nanocomposites

• performance of polymer electrolyte only good above melting point
• high T reduces mechanical stability of the material

• desire single ion conductor
• anion mobility can reduce net charge diffusion between electrodes
• exclusive motion of lithium cation ! transference number = 1

Introduction of inorganic filler 
particles can improve mechanical 

properties
-high surface area of nanoparticles interacts with 
polymer preventing crystallization and sustaining 
mechanical properties at higher temperatures

Lithium Conduction Dependent on Polymer Segmental Motion
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Nanocomposites Containing PEO and 
synthetic lithium hectorites (SLH) clays

They are composed of two tetrahedral silicate layers sandwiching a 
central octahedral layer in a so-called 2:1 arrangement. Isomorphous
substitutions in the lattice of Li(I) for Mg (II) in the octahedral layers 
of hectorite cause an overall negative charge that is compensated by 
the presence of interlayer, or gallery, cations
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Synthesis Of Nanocomposite Membranes
• Colloidal suspensions of 1 g of clay in 100 mL of deionized water 

were stirred for a day. 
• The desired amount of PEO was then added and the mixture was 

stirred for another 24 h. 
• Mixtures contained 0.6, 0.8, 1.0, and 1.2 g of PEO/g of clay. 
• Films were prepared by puddle-casting the slurries onto Teflon-

coated glass plates and air-drying. Further drying was carried out at 
120˚C under an inert atmosphere for 24 h. The typical thickness of 
the film was about 40µm
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DSC of  Nanocomposite Films Made with PEO 
and SLH
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Intercalation of the PEO into the clay can 
disrupt the crystallization of the polymer 
and accounts for the reduction of the 
endothermic peak.  From a comparison 
of the heat of melting in the polymer 
nanocomposites to the heat of melting in 
pure PEO, the amount of crystalline PEO 
in the composites was determined.
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NMR Characterization: Variable Temperature 
Static 7Li NMR Spectra of PEO:SLH = 1.2 Sample
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T = -30 °C

-20000.00.020000.0
Freq (Hz)

T = 30 °C

T = 0 °C
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T = 70 °C

T = 50 °C

The increasing mobility of 
the Li cation and motion of 
PEO inside the clay causes 
the narrowing of the spectra.
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NMR Characterization
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The static 7Li spectra could be 
deconvoluted into two components: a 
narrow component due to mobile 
cations and a broad component due 
to static cations.  The linewidth of the 
broad component does not change 
substantially with temperature.  The 
narrow component becomes 
increasing narrower as the cation 
mobility increases with temperature.
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NMR Characterization

Internal PEO Activation 
Energies 

Sample 
Ratio 

Ea  
(kJ/mol) 

☺0 
(ps) 

0.7 23.1±1.4 0.16±0.08 
1.0 21.2±1.0 0.31±0.11 
1.2 23.3±1.9 0.14±0.09 

PEO bulk ~28  
 

External PEO Activation 
Energies 

Sample 
Ratio 

Ea 
(kJ/mol) 

☺0 
(ps) 

0.7 27.2±3.5 0.0062±0.0078
1.0 28.7±1.0 0.0047±0.0015
1.2 28.6±2.8 0.0019±0.0018

PEO bulk ~28  
 

External PEO has activation 
energies similar to bulk PEO.

Internal PEO has activation energies 
lower than bulk PEO but similar to 
those observed for PEO lithium salt 
composites.
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XRD Characterization

0 10 20 30 40 50 60

R
el

at
iv

e 
In

te
ns

ity
12.74 Å
 (001)

6.38 Å
(002)

4.51 Å
(110,020)

3.14 Å
(004)

2.57 Å
(130,200)

1.71 Å
(150,240,310)

Angle 2�

XRD of SLH



12

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

XRD Characterization
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Small Angle X-Ray Scattering
For these studies, a specially designed sample 
holder was used to heat up the sample and collect 
SAXS data at the same time.
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In Situ SAXS Data of a SLH:PEO 1.2:1 Ratio 
Film
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Small Angle X-Ray Scattering

• At any PEO/SLH ratio, upon increasing the 
temperature, the polymer relaxes and the 
crystalline phase becomes amorphous, as 
indicated by the broadening of the peaks or the 
absence of them.

• In the higher ratios of PEO, the structural 
changes happen between 60 and 80°C and 
those changes are irreversible.
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High Resolution TEM of a Film Made of 
SLH:PEO 1:1 Ratio

Clay layers

Silica spheres

What is the nature 
of the spheres shown
on the background?

SiO2

Where is the SiO2
coming from?

It is coming from
the Si precursor
(clay synthesis)
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Experimental Setup for Conductivity 
Measurements
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Arrhenius Conductivity Plots Derived from 
Nanocomposite Films of PEO:Clay:1.2:1 Ratio
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Membranes for Catalytic and Separation 
Applications
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PEO-PCNs for Catalytic Membranes

= 2.4 wt% Pt(II) 
reduced to Pt(0) 
(200oC under H2)

O
CH2

CH2
O

CH2
1.8 - 2.2 nm

polymer added during or after synthesis
1:1 PEO-clay ratio

e.g. polyethylene oxide (PEO)
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XRD of Pt-PCN Membranes
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In Situ SAXS of Pt-PEO-PCN Membrane 
Reduction

25-100oC at 1oC/min; 100-200oC at 0.5oC/min
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SAXS Analysis: General Unified Fit
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GISAXS of a Catalytic Membrane (1:1 SLH:PEO 
and Pt2+)

-0.6 -0.4 -0.2 0.0

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

-0.6 -0.4 -0.2 0.0

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

-0.6 -0.4 -0.2 0.0

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

-0.6 -0.4 -0.2 0.0

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

-0.6 -0.4 -0.2 0.0

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

32ºC

57ºC 76ºC

146ºC 172ºC

1

2
3

S

S : SAXS (Pt clusters + PEO + 
SLH)
1 : (001) of SLH, d=18.5Å
2 : (002) of SLH, d=9.2Å
3 : PEO, d=6.4Å



25

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

Experimental Conditions and Analysis
• Detector : Gold CCD [9 mosaic CCD cells]
• X-ray Energy : 12keV
• Incidence angle : 0.15deg.
• SDD : 760.5mm

• No reflection effects observed due to sample 
thickness. Data were analyzed with the kinematic
theory.
- Cluster size : Guinier analysis is performed for 

horizontal cuts after subtracting a background [RT 
pattern is assumed as a background for SAXS]
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GISAXS Analysis

0 50 100 150 200
10000

20000

30000

40000

50000

I m
ax

 (a
.u

.)

T (oC)

104

105

100 150 200

5

10

15

R
g (

Å
)

T (oC)

 1.2 PEO/SLH (2*Pt)
 1.0 PEO/SLH (2*Pt)
 1.2 PEO/SLH (1*Pt)
 1.0 PEO/SLH (1*Pt)

I(
0)

 (r
el

at
iv

e 
In

te
ns

ity
)

SLH peak intensities at qz = 0.34Å-1

Increment until about 125ºC is caused 
by the increase of background [SAXS]

Rg and I(0) for Pt clusters
All 4 samples show the same 
tendency.
Low concentration samples reach the 
maximum size and maintains the size.
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Molecular Modeling w/ P. Balbuena (TAM)

Polymer solvation?

MD simulations of 256-atom Pt on graphite with 
Nafion polymer (10 units)
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Conclusions
• The motion of the lithium cation appears to be correlated to 
the PEO conformational dynamics. The activation energies of 
the mobile lithium cations is similar to those observed for PEO 
intercalated in the clay.  The  lithium cation  activation energies 
are similar to those observed in other solid polymer 
electrolytes.

• Not all of the lithium appears to be mobile even at high 
temperatures.  Lithium may be trapped along the interface of 
the PEO and clay; bound by hydroxyl groups at the surface.

• At 60°C, PEO losses its crystallinity and it is at this point 
where the films become more conductive, as also indicated by 
the high conductivity and the almost unity transference number 
(0.95).
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Conclusions

• A Pt-PEO-PCN catalytic membrane is reduced successfully     
under H2 flow at 200°C (SAXS/TGA show PEO is stable). 

• SAXS, TEM, XRD yield Pt(0) size (from 4-5 nm up to 16 nm); 
Pt(0) size and dispersions are being optimized. 

• The PEO-PCN membranes can go to 200°C, but CO oxidation 
occurs at higher temps. Therefore, more thermally stable 
polymers will be tested.  

• Pure clay can be used, but the speculation is that the polymer  
helps to solvate the metal clusters and keep them from 
aggregating.
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